Significance of High Skin Fluxes Produced By Acyclovir Topical Formulations for Achieving Therapeutic Levels of Drug at the Target Site in the Treatment of Cutaneous HSV-1 Infections in Hairless Mice: A Closer Look at the C* Concept. Phenil J. Patel¹, Abdel-Halim Ghanem¹, William I. Higuchi¹, Jer Hsu¹, V. Srinivasan² and Earl R. Kern³. ¹Dept. of Pharmaceutics and Pharmaceutical Chemistry, Univ. of Utah, Salt Lake City, UT 84112; ²TheraTech, Inc., 417 Wakara Way, Salt Lake City, UT 84108; ³Dept. of Pediatrics, Univ. of Alabama at Birmingham, AL 35294.

For many years, our group has been working on the development of a novel approach for prediction of topical antiviral efficacies of acyclovir (ACV) formulations in the treatment of cutaneous HSV-1 infections in hairless mice. This approach is based on estimation of the free drug concentration (C*), at the target site using the experimentally determined in vitro fluxes (J). First, a relationship between ACV flux (using controlled delivery transdermal patches) and efficacy was established by applying a novel method for evaluation of topical and systemic efficacies in hairless mice cutaneously infected with HSV-1 [Gonsho et al., Int. J. Pharm., 65 (1990) 183-194]. Then C* for 50% antiviral efficacy (C*50) was determined from the plasma levels of ACV that inhibited cutaneous lesion formation in 50% of the animals treated systemically [Imanidis et al., Pharm. Res., 11 (1994) 1035-1041]. Using this C^*_{50} along with the ACV flux resulting in 50% topical efficacy (J_{50}), the *in vivo* dermis permeability coefficient (P_D) for ACV was estimated using the equation: $P_D = J_{50}/C^*_{50}$. We can then predict efficacy of a topical formulation by calculating C^* achieved by the formulation from the experimentally measured flux (J) data using the equation: C*= J/PD [Lee et al., Int. J. Pharm., 93 (1993) 139-152]. Based on this analysis, it is clear that the formulation which produces a higher skin flux can achieve a higher C*, resulting in a higher predicted efficacy. To further investigate the significance of skin flux, an extensive examination of the C* concept was undertaken using several ACV formulations. For determination of C*, the in vitro skin fluxes were measured in an in vivo-in vitro experimental design that approximated the in vivo antiviral treatment protocol. Then in vivo efficacies were measured using the hairless mouse model for cutaneous HSV-1 infections. Our results indicate that over a wide range of efficacies, the predictions based on C* (estimated from the in vitro experimental fluxes) are in good agreement with the in vivo efficacies. These findings support the validity of the C* concept and underscore the significance of high skin fluxes produced by topical formulations for achievement of therapeutic levels of ACV at the target site. Supported by a Grant-in -Aid from TheraTech, Inc. and by NIH Grant AI20161.

202

Lidakol Cream vs Zovirax Ointment for the Treatment of Experimental Dorsal Cutaneous Herpes Simplex Virus Type 1 (HSV-1) Infection in the Guinea Pig. M.B.McKeough and S.L.Spruance, University of Utah, Salt Lake City, USA.

Lidakol (10% n-docosanol cream, Lidak Pharmaceuticals, La Jolla, CA) is a 22 carbon-long saturated alcohol which has been reported to be efficacious in the treatment of herpes labialis (AVR 1994;23[Suppl.1]:75). To further investigate this new agent, we infected four sites on the backs of 15 female Hartley outbred guinea pigs with HSV-1 by multiple punctures with a vaccination device (Day 0) and evaluated the therapeutic efficacy of topical Lidakol and Zovirax Ointment (5% acyclovir [ACV] ointment, Burroughs Wellcome). ACV was administered 4x/day for 3 days on Days 1-3 and compared with the ointment placebo. Because of skin irritation, Lidakol was given 3x/day for 3 days and compared with untreated control infections. Efficacy was evaluated on Day 4 by assessment of lesion severity and virus titer at each infection site (n=15 for each Rx).

<u>Measure</u>	<u>Lidakol</u>	<u>Untreated</u>	<u>ACV</u> 56*	<u>Control</u>
# of sores	57 ^a	55	56 *	58
Area (mm²)	245	264	177*	245
Virus titer				
(log ₁₀ pfu/ml)	5.0	4.9	4.2*	4.9
2.10-				

@, all data are median values; *, p<.01
Zovirax Ointment, a formulation which has been ineffective for
herpes labialis, demonstrated a small but significant benefit.
Lidakol had no apparent efficacy in this model.</pre>